Educaţia Matematică Vol. 4, Nr. 1 (2008), 65-75

On a diophantine equation of $a^{x}+b^{y}=z^{2}$ type ${ }^{1}$

Codruţa Elena Pumnea, Amada Dorina Nicoară

Abstract
In this paper we study in natural numbers some diophantine equation of $a^{x}+b^{y}=z^{2}$ type.

2000 Mathematical Subject Classification: 11D61
In this note we study diophantine equation of $a^{x}+b^{y}=z^{2}$ type, where $a, b, c \in \mathbb{N}^{*}, a, b \geq 2, a \neq b$. In their study we use the method of modular arithmetics.

1. Equation $2^{x}+7^{y}=z^{2}$. We have the following result:

Proposition 1.1. The diophantine equation $2^{x}+7^{y}=z^{2}$ has exactly three solutions

$$
(x, y, z) \in\{(3,0,3),(5,2,9),(1,1,2)\}
$$

Proof. We consider several cases.
Case 1.1. For $x=0$, then we have the diophantine equation

$$
7^{y}=z^{2}-1
$$

or

$$
(z-1)(z+1)=7^{y}
$$

[^0]where $z-1=7^{u}$ and $z+1=7^{y-u}, y>2 u, u \in \mathbb{N}^{*}$.
From here, we obtain:
$$
7^{y-u}-7^{u}=2
$$
or
$$
7^{u}\left(7^{y-2 u}-1\right)=2
$$
where $u=0$ and $7^{y}=3$, which is impossible.
Case 1.2. If $y=0$, then we have the diophantine equation
$$
z^{2}-1=2^{x}
$$
or
$$
(z-1)(z+1)=2^{x}
$$
where $z-1=2^{v}$ and $z+1=2^{x-v}, x>2 v, v \in \mathbb{N}^{*}$.
From here, we obtain
$$
2^{x-v}-2^{v}=2
$$
or
$$
2^{v}\left(2^{x-2 v}-1\right)=2
$$
where $v=1$ and $2^{x-2}=2$, that is $v=1$ and $x=3$.
Therefore $x=3, y=0, z=3$.
Case 1.3. x even. Now, we consider $x=2 k, k \in \mathbb{N}^{*}$ we have
$$
z^{2}-2^{2 k}=7^{y}
$$
or
$$
\left(z-2^{k}\right)\left(z+2^{k}\right)=7^{y}
$$
where $z-2^{k}=7^{u}$ and $z+2^{k}=7^{y-u}, y>2 u, y \in \mathbb{N}^{*}$.
From here, we obtain
$$
7^{y-u}-7^{u}=2^{k+1}
$$
or
$$
7^{u}\left(7^{y-2 u}-1\right)=2^{k+1}
$$
which implies $u=0$ and $7^{y}-1=2^{k+1}$.
If $y \geq 1$ we have
$$
(7-1) t=2^{k+1}, t \in \mathbb{N}^{*}
$$
or
$$
6 t=2^{k+1}
$$
it results that 3 divides 2^{k+1}, which is impossible.
Case 1.4. y even. We consider $y=2 k, k \in \mathbb{N}^{*}$ we have
$$
z^{2}-7^{2 k}=2^{x}
$$
or
$$
\left(z-7^{k}\right)\left(z+7^{k}\right)=2^{x}
$$
we have $z-7^{k}=2^{v}$ and $z+7^{k}=2^{x-v}, x>2 v, v \in \mathbb{N}^{*}$.
From here, we obtain
$$
2^{x-v}-2^{v}=2 \cdot 7^{k}
$$
or
$$
2^{v}\left(2^{x-2 v}-1\right)=2 \cdot 7^{k}
$$
which implies $v=1$ and
$$
2^{x-2}-1=7^{k}
$$

As $7^{k} \equiv 0(\bmod 7), k \in \mathbb{N}^{*}$ and $2^{x-2}-1 \equiv 0(\bmod 7)$, only if $x-2=3 p, p \in \mathbb{N}^{*}$. Then:

$$
\begin{equation*}
2^{3 p}-1=7^{k} \tag{1}
\end{equation*}
$$

it results $(7+1)^{p}-1=7^{k}$.
Using the Newton's binomial it results

$$
7^{2} t+7 p=7^{k}, t \in \mathbb{N}^{*}
$$

or

$$
\begin{equation*}
7 t+p=7^{k+1}, t \in \mathbb{N}^{*} \tag{2}
\end{equation*}
$$

If $k=1$, then we have $p=1$ and we have the solution

$$
x=5, y=2, z=9
$$

For $k \geq 2$, from (2) results $p=7 s, s \in \mathbb{N}^{*}$. Then from (1) we have

$$
2^{21 s}-1=7^{k}
$$

or

$$
\left(2^{7}\right)^{3 s}-1=7^{k}
$$

or

$$
\left(2^{7}-1\right) q=7^{k}, q \in \mathbb{N}^{*}
$$

from where we obtain $127 q=7^{k}$, which is impossible because 127 it is not divisible by 7 .
Case 1.5. x, y odd. Because z is odd, then we have

$$
z=2 p+1
$$

and it results $z^{2}=4 p^{2}+4 p+1=4 p(4 p+1)+1 \equiv 1(\bmod 8)$.
For $x \geq 3$ and odd, we have

$$
2^{x} \equiv 0(\bmod 8),
$$

and for y odd we have $7^{2 k+1}=7^{2 k} \cdot 7 \equiv 7(\bmod 8)$.
From here, we obtain

$$
2^{x}+7^{y} \equiv 7(\bmod 8)
$$

which is impossible, because $z^{2} \equiv 1(\bmod 8)$.
If $y=1$ results $z=3$ therefore $x=1, y=1, z=3$.
If $x=1$ and $y \geq 3$ odd, we have

$$
2+7^{y}=z^{2}
$$

or

$$
z^{2}-7^{y}=2
$$

where $z=2 p+1, p \geq 2$ and $y=2 q+1, q \geq 1$, because for $z=1$ the equation has no solution.

Because $7^{y}=(6+1)^{y} \equiv 1(\bmod 6)$, there are three cases:

$$
z=6 p+1,6 p+3,6 p+5
$$

If $z=6 p+1$ we have $z^{2} \equiv 1(\bmod 6)$, so $z^{2}-7^{y} \equiv 0(\bmod 6)$ which is a contradiction with $2 \equiv 2(\bmod 6)$.
If $z=6 p+5$ we have $z^{2} \equiv 1(\bmod 6)$, so $z^{2}-7^{y} \equiv 0(\bmod 6)$ which is a contradiction with $2 \equiv 2(\bmod 6)$.
If $z=6 p+3$ we have $z^{2}=36 p^{2}+36 p+9=36 p(p+1)+9 \equiv 0(\bmod 9)$, it results

$$
z^{2}-7^{y} \equiv 1,4,7(\bmod 9)
$$

which is a contradiction with $2 \equiv 2(\bmod 9)$.
In concluding the diophantine equation (1) has three solutions $(x, y, z) \in$ $\{(3,0,3),(5,2,9),(1,1,2)\}$.
2. Equation $2^{x}+11^{y}=z^{2}$. We have the following result:

Proposition 2.1. The diophantine equation $2^{x}+11^{y}=z^{2}$ has exactly one solution $(x, y, z)=(3,0,3)$.
Proof. We consider several cases:
Case 2.1. If $x=0$, then we have the diophantine equation

$$
11^{y}=z^{2}-1
$$

or

$$
(z-1)(z+1)=11^{y}
$$

where $z-1=11^{u}$ and $z+1=11^{y-u}, y>2 u, u \in \mathbb{N}^{*}$.
From here, we obtain:

$$
11^{y-u}-11^{u}=2
$$

or

$$
11^{u}\left(11^{y-2 u}-1\right)=2
$$

where $u=0$ and $11^{y}=3$, which is impossible.
Case 2.2. If $y=0$, then we have the diophantine equation

$$
z^{2}-1=2^{x}
$$

or

$$
(z-1)(z+1)=2^{x}
$$

where $z-1=2^{v}$ and $z+1=2^{x-v}, x>2 v, v \in \mathbb{N}^{*}$.
From here, we obtain

$$
2^{x-v}-2^{v}=2
$$

or

$$
2^{v}\left(2^{x-2 v}-1\right)=2
$$

where $v=1$ and $2^{x-2}=2$, that is $v=1$ and $x=3$.
Therefore $x=3, y=0, z=3$.
Case 2.3. x even. Now, we consider $x=2 k, k \in \mathbb{N}^{*}$ we have

$$
z^{2}-2^{2 k}=11^{y}
$$

or

$$
\left(z-2^{k}\right)\left(z+2^{k}\right)=11^{y}
$$

where $z-2^{k}=11^{u}$ and $z+2^{k}=11^{y-u}, y>2 u, y \in \mathbb{N}^{*}$.
From here, we obtain

$$
11^{y-u}-11^{u}=2^{k+1}
$$

or

$$
11^{u}\left(11^{y-2 u}-1\right)=2^{k+1}
$$

which implies $u=0$ and

$$
11^{y}-1=2^{k+1}
$$

If $y \geq 1$ we have

$$
10 t=2^{k+1}, t \in \mathbb{N}^{*}
$$

On a diophantine equation...
where it results that 5 divides 2^{k+1}, which is impossible.
Case 2.4. y even. We consider $y=2 k, k \in \mathbb{N}^{*}$ we have

$$
z^{2}-11^{2 k}=2^{x}
$$

or

$$
\left(z-11^{k}\right)\left(z+11^{k}\right)=2^{x},
$$

we have $z-11^{k}=2^{v}$ and $z+11^{k}=2^{x-v}, x>2 v, v \in \mathbb{N}^{*}$.
From here, we obtain

$$
2^{x-v}-2^{v}=2 \cdot 11^{k}
$$

or

$$
2^{v}\left(2^{x-2 v}-1\right)=2 \cdot 11^{k}
$$

which implies $v=1$ and $2^{x-2}-1=11^{k}$. Using modulo 11 we have

$$
x-2=10 p, p \in \mathbb{N}^{*}
$$

or

$$
2^{10 p+2}-1=11^{k}
$$

or

$$
4^{5 p+1}-1=11^{k}
$$

from where we obtain $3 t=11^{k}$, where $t \in \mathbb{N}^{*}$, so 3 divides 11 , which is impossible.
Case 2.5. x, y odd. Because z is odd, then we have

$$
z=2 p+1,
$$

it results $z^{2}=4 p^{2}+4 p+1=4 p(4 p+1)+1 \equiv 1(\bmod 8)$.
If $x \geq 3$ and odd, we have $2^{x} \equiv 0(\bmod 8)$, and if y odd we have $11^{2 k+1}=11^{2 k} \cdot 11 \equiv 3(\bmod 8)$.
From here, we obtain

$$
2^{x}+11^{y} \equiv 3(\bmod 8),
$$

which is impossible, because $z^{2} \equiv 1(\bmod 8)$.
If $x=1$ and y odd, we have $2+11^{y} \equiv 5(\bmod 8)$ which is impossible because $z^{2} \equiv 1(\bmod 8)$.
In concluding the diophantine equation (2) has a solution $(x, y, z)=(3,0,3)$.
3. Equation $2^{x}+13^{y}=z^{2}$. We have the following result:

Proposition 3.1. The diophantine equation $2^{x}+13^{y}=z^{2}$ has exactly one solution $(x, y, z)=(3,0,3)$.
Proof. We consider several cases.
Case 3.1. If $x=0$, then we have the diophantine equation

$$
13^{y}=z^{2}-1
$$

or

$$
(z-1)(z+1)=13^{y}
$$

where $z-1=13^{u}$ and $z+1=13^{y-u}, y>2 u, u \in \mathbb{N}^{*}$.
For here, we obtain

$$
13^{y-u}-13^{u}=2
$$

or

$$
13^{u}\left(13^{y-2 u}-1\right)=2
$$

where $u=0$ and $13^{y}=3$, which is impossible.
Case 3.2. If $y=0$, then we have the diophantine equation

$$
z^{2}-1=2^{x}
$$

or

$$
(z-1)(z+1)=2^{x},
$$

where $z-1=2^{v}$ and $z+1=2^{x-v}, x>2 v, v \in \mathbb{N}^{*}$.
From here, we obtain

$$
2^{x-v}-2^{v}=2
$$

or

$$
2^{v}\left(2^{x-2 v}-1\right)=2
$$

where $v=1$ and $2^{x-2}=2$, that is $v=1$ and $x=3$.
Therefore $x=3, y=0, z=3$.
Case 3.3. x even. We consider $x=2 k, k \in \mathbb{N}^{*}$ we have

$$
z^{2}-2^{2 k}=13^{y}
$$

or

$$
\left(z-2^{k}\right)\left(z+2^{k}\right)=13^{y}
$$

we have $z-2^{k}=13^{y}$ and $z+2^{k}=13^{y-u}, y>2 u, y \in \mathbb{N}^{*}$.
From here, we obtain

$$
13^{y-u}-13^{u}=2^{k+1}
$$

or

$$
13^{u}\left(13^{y-2 u}-1\right)=2^{k+1}
$$

where $u=0$ and $13^{y}-1=2^{k+1}$. If $y \geq 1$ we have

$$
(13-1) t=2^{k+1}, t \in \mathbb{N}^{*}
$$

or

$$
12 t=2^{k+1}
$$

from where it results that 3 divides 2^{k+1}, which is impossible.
Case 3.4. y even. We consider $y=2 k, k \in \mathbb{N}^{*}$ we obtain

$$
z^{2}-13^{2 k}=2^{x}
$$

or

$$
\left(z-13^{k}\right)\left(z+13^{k}\right)=2^{x}
$$

where $z-13^{k}=2^{x}$ and $z+13^{k}=2^{x-v}, x>2 v, v \in \mathbb{N}^{*}$.
From here, we obtain

$$
2^{x-v}-2^{v}=2 \cdot 13^{k}
$$

or

$$
2^{v}\left(2^{x-2 v}-1\right)=2 \cdot 13^{k}
$$

where $v=1$ and $2^{x-2}-1=13^{k}$,
and $x-2=12 p$, where $p \in \mathbb{N}^{*}$ or

$$
x=12 p+2
$$

We have,

$$
2^{x-2}-1=\left(2^{2}\right)^{6 p+1}-1=3 t, t \in \mathbb{N}^{*}
$$

3 divides 13, which is impossible.
Case 3.5. x, y odd. Because z is odd, then we have

$$
z=2 p+1
$$

it results $z^{2}=4 p^{2}+4 p+1=4 p(4 p+1)+1 \equiv 1(\bmod 8)$.
If $x \geq 3$ we have $2^{x} \equiv 0(\bmod 8)$, and if y odd we have $13^{2 k+1}=$ $13^{2 k} \cdot 13 \equiv 3(\bmod 8)$.

From here, we obtain

$$
2^{x}+13^{y} \equiv 5(\bmod 8)
$$

which is a contradiction, because $z^{2} \equiv 1(\bmod 8)$.
If $x=1$ and y odd, we have

$$
2+13^{y} \equiv 7(\bmod 8)
$$

which is impossible because $z^{2} \equiv 1(\bmod 8)$.
In concluding the diophantine equation (3) has only the solution

$$
(x, y, z)=(3,0,3)
$$

References

[1] D. Acu, On a Diophantine equation, General Mathematics, Vol15, Nr.4, 2007;
[2] D. Acu, Aritmetică şi teoria numerelor, Editura Universitatea "Lucian Blaga" din Sibiu, 1999;
[3] I. Cucurezeanu, Ecuaţii în numere întregi, Editura Aramis, 2006.
Departament of Mathematics, Faculty of Sciences,
University "Lucian Blaga" of Sibiu, Dr. Ion Ratiu 5-7, Sibiu, 550012, Romania

[^0]: ${ }^{1}$ Received 28 April, 2008
 Accepted for publication (in revised form) 20 May, 2008

