A normed space generated by a real function ${ }^{1}$

Silviu Crăciunas

Abstract

We consider a real function f so that $\lim _{x \rightarrow \infty} f(x)=0$ and the normed space generated by a family of functions g for that $\lim _{x \rightarrow \infty} g(x) f(x)$ are finite.

2000 Mathematical Subject Classification: 26S21
For $a \in \mathbb{R}$ we consider a fixed real function $f:(a, \infty) \rightarrow \mathbb{R}$ which

$$
\lim _{x \rightarrow \infty} f(x)=0
$$

and respectively, the space

$$
\mathcal{F}(f)=\left\{g / g:(a, \infty) \rightarrow \mathbb{R}, \lim _{x \rightarrow \infty} g(x) f(x) \text { are finite }\right\}
$$

Theorem 1. The space $\mathcal{F}(f)$ is a real linear space relative to the usual addition of functions, respectively to the scalar multiplication.

Proof. If $g, h \in \mathcal{F}(f)$ then

$$
(g(x)+h(x)) f(x))=g(x) f(x)+h(x) f(x)
$$

has a finitely limit to ∞ and $g+h \in \mathcal{F}(f)$. Similarly, if $g \in \mathcal{F}(f)$ and $\lambda \in \mathbb{R}$ then $(\lambda g)(x)=\lambda g(x)$ has a finitely limit to ∞ and $\lambda g \in \mathcal{F}(f)$.

[^0]Theorem 2. The binary relation defined on $\mathcal{F}(f)$ by $g \sim h$ if and only if

$$
\lim _{x \rightarrow \infty} g(x) f(x)=\lim _{x \rightarrow \infty} h(x) f(x)
$$

is an equivalence relation.
The proof is immediately.
Theorem 3. The quotient space $\mathcal{F}(f) / \sim$, denoted by $F(f)$ is also a real linear space.

Proof. We will show that the equivalence relation \sim is compatible with the linear structure of $\mathcal{F}(f)$.

Let $g \sim g^{\prime}$ and $h \sim h^{\prime}$. Then,

$$
\begin{gathered}
\lim _{x \rightarrow \infty}(g(x)+h(x)) f(x)=\lim _{x \rightarrow \infty}(g(x) f(x)+h(x) f(x))= \\
\lim _{x \rightarrow \infty} g(x) f(x)+\lim _{x \rightarrow \infty} h(x) f(x)=\lim _{x \rightarrow \infty} g^{\prime}(x) f(x)+\lim _{x \rightarrow \infty} h^{\prime}(x) f(x)= \\
\lim _{x \rightarrow \infty}\left(g^{\prime}(x) f(x)+h^{\prime}(x) f(x)\right)=\lim _{x \rightarrow \infty}\left(g^{\prime}(x)+h^{\prime}(x)\right) f(x)
\end{gathered}
$$

and, consequently, $g+h \sim g^{\prime}+h^{\prime}$.
Let $g \sim g^{\prime}$ and $\lambda \in \mathbb{R}$. Then

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}(\lambda g(x)) f(x)=\lim _{x \rightarrow \infty} \lambda(g(x) f(x))=\lambda \lim _{x \rightarrow \infty} g(x) f(x)= \\
& \lambda \lim _{x \rightarrow \infty} g^{\prime}(x) f(x)=\lim _{x \rightarrow \infty} \lambda\left(g^{\prime}(x) f(x)\right)=\lim _{x \rightarrow \infty}\left(\lambda g^{\prime}(x)\right) f(x),
\end{aligned}
$$

and, finally, $\lambda g \sim \lambda g^{\prime}$.
Theorem 4. The real valued function defined on $F(f)$ by

$$
\hat{g} \mapsto\|\hat{g}\|=\lim _{x \rightarrow \infty}|g(x) f(x)|,
$$

where $g \in \hat{g}$, is a norm on $F(f)$. Thus, $F(f)$ becomes a normed linear space.

Proof. First, let us show that the value of the function is independent of the particular representative chosen in the class \hat{g} (the function is welldefined). Let

$$
g^{\prime}, g^{\prime \prime} \in \hat{g}
$$

hence

$$
\lim _{x \rightarrow \infty} g^{\prime}(x) f(x)=\lim _{x \rightarrow \infty} g^{\prime \prime}(x) f(x)
$$

It results that the functions $\left|g^{\prime}(x) f(x)\right|,\left|g^{\prime \prime}(x) f(x)\right|$ have also the same limit to ∞.

We have

$$
\|\hat{0}\|=\lim _{x \rightarrow \infty}|0 f(x)|=0
$$

and conversely, if

$$
\|\hat{g}\|=0, \text { then } \lim _{x \rightarrow \infty}|g(x) f(x)|=0
$$

where $g \in \hat{g}$. Then also

$$
\lim _{x \rightarrow \infty} g(x) f(x)=0
$$

therefore $g \in \hat{0}$, this means $\hat{g}=\hat{0}$.
Let $\alpha \in \mathbb{R}$ and $\hat{g} \in F(f)$). If $g \in \hat{g}$ then $\alpha g \in \alpha \hat{g}$ and we can write

$$
\|\alpha \hat{g}\|=\lim _{x \rightarrow \infty}|(\alpha g(x)) f(x)|=|\alpha| \lim _{x \rightarrow \infty}|g(x) f(x)|=|\alpha|\|\hat{g}\|
$$

Let $\hat{g}, \hat{h} \in F(f)$ and $g \in \hat{g}, h \in \hat{h}$. Obviously,

$$
g+h \in \widehat{g+h}=\hat{g}+\hat{h}
$$

and, consequently,

$$
\begin{gathered}
\|\hat{g}+\hat{h}\|=\lim _{x \rightarrow \infty}|(g(x)+h(x)) f(x)|= \\
\lim _{x \rightarrow \infty}|g(x) f(x)+h(x) f(x)| \leq \lim _{x \rightarrow \infty}(|g(x) f(x)|+|h(x) f(x)|)= \\
\lim _{x \rightarrow \infty}|g(x) f(x)|+\lim _{x \rightarrow \infty}|h(x) f(x)|=\|\hat{g}\|+\|\hat{h}\| .
\end{gathered}
$$

Bibliografie

[1] Colojoară, I. Analiză Matematică, Editura Didactică şi Pedagogică, Bucureşti (1983).
[2] Garnir, H.G., De Wilde M., Schmets, J., Analyse Fonctionnelle, Espaces Fonctionnels usuels, Tome III, Birkhäuser Verlag, Basel und Stuttgard (1973)
[3] M. Nicolescu, N. Dinculeanu, S. Marcus, Analiză Matematicăa, vol. I, Editura Didactică şi Pedagogică, Bucureşti (1966).
"Lucian Blaga" University of Sibiu, Department of Mathematics,
Sibiu, Romania
E-mail: silviu.craciunas@ulbsibiu.ro

[^0]: ${ }^{1}$ Received 13 September 2006
 Accepted for publication (in revised form) 12 November 2006

