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Proving some geometric inequalities
by using complex numbers

Titu Andreescu and Dorin Andrica

Abstract

Let ABC be a triangle and let R and r be its circumradius and

inradius, respectively. One of the most important result in Triangle

Geometry is Euler,s inequality R ≥ 2r. There are many proofs for

this inequality (geometric, trigonometric, analytic etc.). We refer to

the books [3] and [4] for some useful discussions on this inequality.

In this note we will give other proofs by using complex num-

bers. The method of complex numbers in Geometry is a powerful

technique. For other applications we refer to our new book [2].

2000 Mathematical Subject Classification: 26D99, 97D50

Theorem 1. Let P be an arbitrary point in the plane of triangle ABC.

Then

αPB · PC + βPC · PA + γPA · PB ≥ αβγ,

where α, β, γ are the side lengths of triangle ABC.
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Proof. Let us consider the origin of the complex plane at P and let a, b, c

be the affixes of vertices of triangle ABC. From the algebraic identity

(1)
bc

(a − b)(a − c)
+

ca

(b − c)(b − a)
+

ab

(c − a)(c − b)
= 1

by passing to moduli, it follows that

(2)
|b||c|

|a − b||a − c|
+

|c||a|

|b − c||b − a|
+

|a||b|

|c − a||c − b|
≥ 1.

Taking into account that |a| = PA, |b| = PB, |c| = PC and |b− c| = α,

|c − a| = β, |a − b| = γ, (2) is equivalent to

PB · PC

βγ
+

PC · PA

γα
+

PA · PB

αβ
≥ 1,

i.e. the desired inequality.

Remarks. 1) If P is the circumcenter O of triangle ABC we can derive

Euler,s inequality R ≥ 2r. Indeed, in this case the inequality is equivalent

to R2(α + β + γ) ≥ αβγ. Therefore we can write

R2 ≥
αβγ

α + β + γ
=

αβγ

2s
=

4R

2s
·
αβγ

4R
= 2R ·

area[ABC]

s
= 2Rr,

hence R ≥ 2r.

2) We can obtain the inequality

(3) R2(α + β + γ) ≥ αβγ

by a different argument, but also by using complex numbers. This alterna-

tive proof is given in our book [1]. Indeed, with the notations in the proof

of Theorem 1, we have the identity

(4) a2(b − c) + b2(c − a) + c2(a − b) = (a − b)(b − c)(c − a).

Passing to moduli and using the well-known triangle inequality, we ob-

tain

(5) |a − b||b − c||c − a| ≤ |a|2|b − c| + |b|2|c − a| + |c|2|a − b|.
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Suppose that the circumcenter O of triangle ABC is the origin of the

complex plane. Then |a| = |b| = |c| = R and (5) is equivalent to inequality

(3).

3) If P is the centroid G of triangle ABC, we derive the following in-

equality involving the medians mα,mβ,mγ :

mαmβ

αβ
+

mβmγ

βγ
+

mγmα

γα
≥

9

4
,

with equality if and only if triangle ABC is equilateral.

Some Olympiad-calliber problems are directly connected to the result

contained in Theorem 1. The first such problem deals with the case of

equality when triangle ABC is acute-angled.

Problem 1. Let ABC be an acute-angled triangle and let P be a point in

its interior. Prove that

α · PB · PC + β · PC · PA + γ · PA · PB = αβγ,

if and only if P is the orthocenter of triangle ABC.

(1998 Chinese Mathematical Olympiad)

Solution. Let P be the origin of the complex plane and let a, b, c be the

affixes of A,B,C, respectively. The relation in the problem is equivalent to

|ab(a − b)| + |bc(b − c)| + |ca(c − a)| = |(a − b)(b − c)(c − a)|.

Let

z1 =
ab

(a − c)(b − c)
, z2 =

bc

(b − a)(c − a)
, z3 =

ca

(c − b)(a − b)
.

It follows that

|z1| + |z2| + |z3| = 1 and z1 + z2 + z3 = 1,

the latter from identity (1) in the previous problem.
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We will prove that P is the orthocenter of triangle ABC if and only if

z1, z2, z3 are positive real numbers. Indeed, if P is the orthocenter, then,

since the triangle ABC is acute-angled, it follows that P is in the interior

of ABC. Hence there are positive real numbers r1, r2, r3 such that

a

b − c
= −r1i,

b

c − a
= −r2i,

c

a − b
= −r3i,

implying z1 = r1r2 > 0, z2 = r2r3 > 0, z3 = r3r1 > 0 and we are done.

Conversely, suppose that z1, z2, z3 are all positive real numbers. Because

−
z1z2

z3

=

(

b

c − a

)2

, −
z2z3

z1

=

(

c

a − b

)2

, −
z3z1

z2

=

(

a

b − c

)2

it follows that
a

b − c
,

b

c − a
,

c

a − b

are pure imaginary numbers, thus AP ⊥ BC and BP ⊥ CA, showing that

P is the orthocenter of triangle ABC.

Problem 2. Let G be the centroid of triangle ABC and let R1, R2, R3 be

the circumradii of triangles GBC, GCA, GAB, respectively. Then

R1 + R2 + R3 ≥ 3R,

where R is the circumradius of triangle ABC.

Solution. In Theorem 1, let P be the centroid G of triangle ABC. Then

(6) α · GB · GC + β · GC · GA + γ · GA · GB ≥ αβγ,

where α, β, γ are the side lengths of triangle ABC.

But

α · GB · GC = 4R1 · area[GBC] = 4R1 ·
1

3
area[ABC]

and the other two relations:

β · GC · GA = 4R2 ·
1

3
area[ABC], γ · GA · GB = 4R3 ·

1

3
area[ABC].
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Hence (6) is equivalent to

4

3
(R1 + R2 + R3) · area[ABC] ≥ 4R · area[ABC],

i.e. R1 + R2 + R3 ≥ 3R, as desired.

Problem 3. Let ABC be a triangle and let P be a point in its interior.

Let R1, R2, R3 be the radii of the circumcircles of triangles PBC, PCA,

PAB, respectively. Lines PA, PB, PC intersect sides BC, CA, AB at

A1, B1, C1, respectively. Denote

k1 =
PA1

AA1

, k2 =
PB1

BB1

, k3 =
PC1

CC1

.

Prove that

k1R1 + k2R2 + k3R3 ≥ R,

where R is the circumradius of triangle ABC.

(2004 Romanian IMO Team Selection Test)

Solution. Note that

k1 =
area[PBC]

area[ABC]
, k2 =

area[PCA]

area[ABC]
, k3 =

area[PAB]

area[ABC]
.

But area[ABC] =
αβγ

4R
and area[PBC] =

α · PB · PC

4R1

. Other two

similar relations for area[PCA] and area[PAB] hold.

The desired inequality is equivalent to

R
α · PB · PC

αβγ
+ R

β · PC · PA

αβγ
+ R

γ · PA · PB

αβγ
≥ R,

which reduces to the inequality in Theorem 1.

In the case when triangle ABC is acute-angled, from Problem 1 it follows

that equality holds if and only if P is the orthocenter of ABC.

Theorem 2. Let P be an arbitrary point in the plane of triangle ABC.

Then

(7) α · PA2 + β · PB2 + γ · PC2 ≥ αβγ.
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Proof. Let us consider the origin of the complex plane at the point P

and let a, b, c be the affixes of the vertices of triangle ABC. The following

identity is easy to verify:

(8)
a2

(a − b)(a − c)
+

b2

(b − a)(b − c)
+

c2

(c − a)(c − b)
= 1.

By passing to moduli it follows that

1 =

∣

∣

∣

∣

∣

∑

cyc

a2

(a − b)(a − c)

∣

∣

∣

∣

∣

≤
∑

cyc

|a|2

|a − b||a − c|

Taking into account that |a| = PA, |b| = PB, |c| = PC and |b− c| = α,

|c − a| = β, |a − b| = γ, the previous inequality is equivalent to (7).

Remarks. 1) If P is the circumcenter O of triangle ABC, then PA = PB =

PC = R and from (8) we derive again inequality (3), which is equivalent to

Euler,s inequality R ≥ 2r.

2) If P is the centroid G of triangle ABC, then

PA2 =
1

9
[2(β2 + γ2) − α2], PB2 =

1

9
[2(γ2 + α2) − β2],

PC2 =
1

9
[2(α2 + β2) − γ2]

and (7) is equivalent to

(9) 2
∑

cyc

(β2 + γ2) ≥ 9αβγ + α3 + β3 + γ3.

3) If P is the incenter I of triangle ABC, then

PA =
r

sin
A

2

, PB =
r

sin
B

2

, PC =
r

sin
C

2

and is not difficult to see that we have equality in (7).

4) A different proof for (7), by using a variant of Lagrange,s identity, is

given in the book [4].
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Theorem 3. Let P be an arbitrary point in the plane of triangle ABC.

Then

(10) α · PA3 + β · PB3 + γ · PC3 ≥ 3αβγPG,

where G is the centroid of triangle ABC.

Proof. The identity

(11) x3(y − z) + y3(z − x) + z3(x − y) = (x − y)(y − z)(z − x)(x + y + z)

holds for any complex numbers x, y, z. Passing to moduli, we obtain

(12) |x|3|y − z|+ |y|3|z − x|+ |z|3|x− y| ≥ |x− y||y − z||z − x||x + y + z|

Let a, b, c, zP be the affixes of points A,B,C, P , respectively. In (12)

consider x = zP − a, y = zP − b, z = zP − c and obtain inequality (10).

Remarks. 1) If P is the circumcenter O of triangle ABC, after some

elementary transformations, (10) becomes

(13)
R2

6r
≥ OG.

2) Squaring both sides of (13), we obtain

(14) R2 ≥ 36r2 · OG2.

Using the relation OG2 = R2 −
1

9
(α2 + β2 + γ2), (14) is equivalent to

(15) R2(R2 − 4r2) ≥ 4r2[8R2 − (α2 + β2 + γ2)].

The inequality (15) improves Euler,s inequality for the class of obtuse

triangles. This is equivalent to proving that α2 +β2 +γ2 < 8R2 in any such

triangle. The last relation can be written as sin2 A + sin2 B + sin2 C < 2, or

cos2 A + cos2 B − sin2 C > 0. That is

1 + cos 2A

2
+

1 + cos 2B

2
− 1 + cos2 C > 0,

which reduces to cos(A + B) cos(A − B) + cos2 C > 0. This is equivalent

to cos C[cos(A − B) − cos(A + B)] > 0, i.e. cos A cos B cos C < 0, which is

clearly true.
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