Proving some geometric inequalities by using complex numbers

Titu Andreescu and Dorin Andrica

Abstract

Let $A B C$ be a triangle and let R and r be its circumradius and inradius, respectively. One of the most important result in Triangle Geometry is Euler's inequality $R \geq 2 r$. There are many proofs for this inequality (geometric, trigonometric, analytic etc.). We refer to the books [3] and [4] for some useful discussions on this inequality.

In this note we will give other proofs by using complex numbers. The method of complex numbers in Geometry is a powerful technique. For other applications we refer to our new book [2].

2000 Mathematical Subject Classification: 26D99, 97D50

Theorem 1. Let P be an arbitrary point in the plane of triangle $A B C$. Then

$$
\alpha P B \cdot P C+\beta P C \cdot P A+\gamma P A \cdot P B \geq \alpha \beta \gamma,
$$

where α, β, γ are the side lengths of triangle $A B C$.

Proof. Let us consider the origin of the complex plane at P and let a, b, c be the affixes of vertices of triangle $A B C$. From the algebraic identity

$$
\begin{equation*}
\frac{b c}{(a-b)(a-c)}+\frac{c a}{(b-c)(b-a)}+\frac{a b}{(c-a)(c-b)}=1 \tag{1}
\end{equation*}
$$

by passing to moduli, it follows that

$$
\begin{equation*}
\frac{|b||c|}{|a-b||a-c|}+\frac{|c||a|}{|b-c||b-a|}+\frac{|a||b|}{|c-a||c-b|} \geq 1 . \tag{2}
\end{equation*}
$$

Taking into account that $|a|=P A,|b|=P B,|c|=P C$ and $|b-c|=\alpha$, $|c-a|=\beta,|a-b|=\gamma,(2)$ is equivalent to

$$
\frac{P B \cdot P C}{\beta \gamma}+\frac{P C \cdot P A}{\gamma \alpha}+\frac{P A \cdot P B}{\alpha \beta} \geq 1,
$$

i.e. the desired inequality.

Remarks. 1) If P is the circumcenter O of triangle $A B C$ we can derive Euler's inequality $R \geq 2 r$. Indeed, in this case the inequality is equivalent to $R^{2}(\alpha+\beta+\gamma) \geq \alpha \beta \gamma$. Therefore we can write

$$
R^{2} \geq \frac{\alpha \beta \gamma}{\alpha+\beta+\gamma}=\frac{\alpha \beta \gamma}{2 s}=\frac{4 R}{2 s} \cdot \frac{\alpha \beta \gamma}{4 R}=2 R \cdot \frac{\operatorname{area}[A B C]}{s}=2 R r
$$

hence $R \geq 2 r$.
2) We can obtain the inequality

$$
\begin{equation*}
R^{2}(\alpha+\beta+\gamma) \geq \alpha \beta \gamma \tag{3}
\end{equation*}
$$

by a different argument, but also by using complex numbers. This alternative proof is given in our book [1]. Indeed, with the notations in the proof of Theorem 1, we have the identity

$$
\begin{equation*}
a^{2}(b-c)+b^{2}(c-a)+c^{2}(a-b)=(a-b)(b-c)(c-a) . \tag{4}
\end{equation*}
$$

Passing to moduli and using the well-known triangle inequality, we obtain

$$
\begin{equation*}
|a-b||b-c||c-a| \leq|a|^{2}|b-c|+|b|^{2}|c-a|+|c|^{2}|a-b| . \tag{5}
\end{equation*}
$$

Suppose that the circumcenter O of triangle $A B C$ is the origin of the complex plane. Then $|a|=|b|=|c|=R$ and (5) is equivalent to inequality (3).
3) If P is the centroid G of triangle $A B C$, we derive the following inequality involving the medians $m_{\alpha}, m_{\beta}, m_{\gamma}$:

$$
\frac{m_{\alpha} m_{\beta}}{\alpha \beta}+\frac{m_{\beta} m_{\gamma}}{\beta \gamma}+\frac{m_{\gamma} m_{\alpha}}{\gamma \alpha} \geq \frac{9}{4}
$$

with equality if and only if triangle $A B C$ is equilateral.
Some Olympiad-calliber problems are directly connected to the result contained in Theorem 1. The first such problem deals with the case of equality when triangle $A B C$ is acute-angled.
Problem 1. Let $A B C$ be an acute-angled triangle and let P be a point in its interior. Prove that

$$
\alpha \cdot P B \cdot P C+\beta \cdot P C \cdot P A+\gamma \cdot P A \cdot P B=\alpha \beta \gamma
$$

if and only if P is the orthocenter of triangle $A B C$.
(1998 Chinese Mathematical Olympiad)

Solution. Let P be the origin of the complex plane and let a, b, c be the affixes of A, B, C, respectively. The relation in the problem is equivalent to

$$
|a b(a-b)|+|b c(b-c)|+|c a(c-a)|=|(a-b)(b-c)(c-a)| .
$$

Let

$$
z_{1}=\frac{a b}{(a-c)(b-c)}, \quad z_{2}=\frac{b c}{(b-a)(c-a)}, \quad z_{3}=\frac{c a}{(c-b)(a-b)} .
$$

It follows that

$$
\left|z_{1}\right|+\left|z_{2}\right|+\left|z_{3}\right|=1 \quad \text { and } \quad z_{1}+z_{2}+z_{3}=1
$$

the latter from identity (1) in the previous problem.

We will prove that P is the orthocenter of triangle $A B C$ if and only if z_{1}, z_{2}, z_{3} are positive real numbers. Indeed, if P is the orthocenter, then, since the triangle $A B C$ is acute-angled, it follows that P is in the interior of $A B C$. Hence there are positive real numbers r_{1}, r_{2}, r_{3} such that

$$
\frac{a}{b-c}=-r_{1} i, \quad \frac{b}{c-a}=-r_{2} i, \quad \frac{c}{a-b}=-r_{3} i,
$$

implying $z_{1}=r_{1} r_{2}>0, z_{2}=r_{2} r_{3}>0, z_{3}=r_{3} r_{1}>0$ and we are done. Conversely, suppose that z_{1}, z_{2}, z_{3} are all positive real numbers. Because

$$
-\frac{z_{1} z_{2}}{z_{3}}=\left(\frac{b}{c-a}\right)^{2}, \quad-\frac{z_{2} z_{3}}{z_{1}}=\left(\frac{c}{a-b}\right)^{2}, \quad-\frac{z_{3} z_{1}}{z_{2}}=\left(\frac{a}{b-c}\right)^{2}
$$

it follows that

$$
\frac{a}{b-c}, \frac{b}{c-a}, \frac{c}{a-b}
$$

are pure imaginary numbers, thus $A P \perp B C$ and $B P \perp C A$, showing that P is the orthocenter of triangle $A B C$.
Problem 2. Let G be the centroid of triangle $A B C$ and let R_{1}, R_{2}, R_{3} be the circumradii of triangles $G B C, G C A, G A B$, respectively. Then

$$
R_{1}+R_{2}+R_{3} \geq 3 R
$$

where R is the circumradius of triangle $A B C$.
Solution. In Theorem 1, let P be the centroid G of triangle $A B C$. Then

$$
\begin{equation*}
\alpha \cdot G B \cdot G C+\beta \cdot G C \cdot G A+\gamma \cdot G A \cdot G B \geq \alpha \beta \gamma \tag{6}
\end{equation*}
$$

where α, β, γ are the side lengths of triangle $A B C$.
But

$$
\alpha \cdot G B \cdot G C=4 R_{1} \cdot \operatorname{area}[G B C]=4 R_{1} \cdot \frac{1}{3} \operatorname{area}[A B C]
$$

and the other two relations:

$$
\beta \cdot G C \cdot G A=4 R_{2} \cdot \frac{1}{3} \operatorname{area}[A B C], \quad \gamma \cdot G A \cdot G B=4 R_{3} \cdot \frac{1}{3} \operatorname{area}[A B C] .
$$

Hence (6) is equivalent to

$$
\frac{4}{3}\left(R_{1}+R_{2}+R_{3}\right) \cdot \operatorname{area}[A B C] \geq 4 R \cdot \operatorname{area}[A B C]
$$

i.e. $R_{1}+R_{2}+R_{3} \geq 3 R$, as desired.

Problem 3. Let $A B C$ be a triangle and let P be a point in its interior. Let R_{1}, R_{2}, R_{3} be the radii of the circumcircles of triangles $P B C, P C A$, $P A B$, respectively. Lines $P A, P B, P C$ intersect sides $B C, C A, A B$ at A_{1}, B_{1}, C_{1}, respectively. Denote

$$
k_{1}=\frac{P A_{1}}{A A_{1}}, \quad k_{2}=\frac{P B_{1}}{B B_{1}}, \quad k_{3}=\frac{P C_{1}}{C C_{1}} .
$$

Prove that

$$
k_{1} R_{1}+k_{2} R_{2}+k_{3} R_{3} \geq R,
$$

where R is the circumradius of triangle $A B C$.
(2004 Romanian IMO Team Selection Test)
Solution. Note that

$$
k_{1}=\frac{\text { area }[P B C]}{\text { area }[A B C]}, \quad k_{2}=\frac{\text { area }[P C A]}{\text { area }[A B C]}, \quad k_{3}=\frac{\text { area }[P A B]}{\text { area }[A B C]} .
$$

But area $[A B C]=\frac{\alpha \beta \gamma}{4 R}$ and $\operatorname{area}[P B C]=\frac{\alpha \cdot P B \cdot P C}{4 R_{1}}$. Other two similar relations for area $[P C A]$ and area $[P A B]$ hold.

The desired inequality is equivalent to

$$
R \frac{\alpha \cdot P B \cdot P C}{\alpha \beta \gamma}+R \frac{\beta \cdot P C \cdot P A}{\alpha \beta \gamma}+R \frac{\gamma \cdot P A \cdot P B}{\alpha \beta \gamma} \geq R
$$

which reduces to the inequality in Theorem 1.
In the case when triangle $A B C$ is acute-angled, from Problem 1 it follows that equality holds if and only if P is the orthocenter of $A B C$.
Theorem 2. Let P be an arbitrary point in the plane of triangle $A B C$. Then

$$
\begin{equation*}
\alpha \cdot P A^{2}+\beta \cdot P B^{2}+\gamma \cdot P C^{2} \geq \alpha \beta \gamma \tag{7}
\end{equation*}
$$

Proof. Let us consider the origin of the complex plane at the point P and let a, b, c be the affixes of the vertices of triangle $A B C$. The following identity is easy to verify:

$$
\begin{equation*}
\frac{a^{2}}{(a-b)(a-c)}+\frac{b^{2}}{(b-a)(b-c)}+\frac{c^{2}}{(c-a)(c-b)}=1 . \tag{8}
\end{equation*}
$$

By passing to moduli it follows that

$$
1=\left|\sum_{c y c} \frac{a^{2}}{(a-b)(a-c)}\right| \leq \sum_{c y c} \frac{|a|^{2}}{|a-b||a-c|}
$$

Taking into account that $|a|=P A,|b|=P B,|c|=P C$ and $|b-c|=\alpha$, $|c-a|=\beta,|a-b|=\gamma$, the previous inequality is equivalent to (7).
Remarks. 1) If P is the circumcenter O of triangle $A B C$, then $P A=P B=$ $P C=R$ and from (8) we derive again inequality (3), which is equivalent to Euler's inequality $R \geq 2 r$.
2) If P is the centroid G of triangle $A B C$, then

$$
\begin{gathered}
P A^{2}=\frac{1}{9}\left[2\left(\beta^{2}+\gamma^{2}\right)-\alpha^{2}\right], \quad P B^{2}=\frac{1}{9}\left[2\left(\gamma^{2}+\alpha^{2}\right)-\beta^{2}\right], \\
P C^{2}=\frac{1}{9}\left[2\left(\alpha^{2}+\beta^{2}\right)-\gamma^{2}\right]
\end{gathered}
$$

and (7) is equivalent to

$$
\begin{equation*}
2 \sum_{c y c}\left(\beta^{2}+\gamma^{2}\right) \geq 9 \alpha \beta \gamma+\alpha^{3}+\beta^{3}+\gamma^{3} . \tag{9}
\end{equation*}
$$

3) If P is the incenter I of triangle $A B C$, then

$$
P A=\frac{r}{\sin \frac{A}{2}}, \quad P B=\frac{r}{\sin \frac{B}{2}}, \quad P C=\frac{r}{\sin \frac{C}{2}}
$$

and is not difficult to see that we have equality in (7).
4) A different proof for (7), by using a variant of Lagrange's identity, is given in the book [4].

Theorem 3. Let P be an arbitrary point in the plane of triangle $A B C$. Then

$$
\begin{equation*}
\alpha \cdot P A^{3}+\beta \cdot P B^{3}+\gamma \cdot P C^{3} \geq 3 \alpha \beta \gamma P G \tag{10}
\end{equation*}
$$

where G is the centroid of triangle $A B C$.
Proof. The identity
(11) $x^{3}(y-z)+y^{3}(z-x)+z^{3}(x-y)=(x-y)(y-z)(z-x)(x+y+z)$
holds for any complex numbers x, y, z. Passing to moduli, we obtain
$|x|^{3}|y-z|+|y|^{3}|z-x|+|z|^{3}|x-y| \geq|x-y||y-z||z-x||x+y+z|$
Let a, b, c, z_{P} be the affixes of points A, B, C, P, respectively. In (12) consider $x=z_{P}-a, y=z_{P}-b, z=z_{P}-c$ and obtain inequality (10).
Remarks. 1) If P is the circumcenter O of triangle $A B C$, after some elementary transformations, (10) becomes

$$
\begin{equation*}
\frac{R^{2}}{6 r} \geq O G \tag{13}
\end{equation*}
$$

2) Squaring both sides of (13), we obtain

$$
\begin{equation*}
R^{2} \geq 36 r^{2} \cdot O G^{2} \tag{14}
\end{equation*}
$$

Using the relation $O G^{2}=R^{2}-\frac{1}{9}\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right),(14)$ is equivalent to

$$
\begin{equation*}
R^{2}\left(R^{2}-4 r^{2}\right) \geq 4 r^{2}\left[8 R^{2}-\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)\right] \tag{15}
\end{equation*}
$$

The inequality (15) improves Euler's inequality for the class of obtuse triangles. This is equivalent to proving that $\alpha^{2}+\beta^{2}+\gamma^{2}<8 R^{2}$ in any such triangle. The last relation can be written as $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C<2$, or $\cos ^{2} A+\cos ^{2} B-\sin ^{2} C>0$. That is

$$
\frac{1+\cos 2 A}{2}+\frac{1+\cos 2 B}{2}-1+\cos ^{2} C>0
$$

which reduces to $\cos (A+B) \cos (A-B)+\cos ^{2} C>0$. This is equivalent to $\cos C[\cos (A-B)-\cos (A+B)]>0$, i.e. $\cos A \cos B \cos C<0$, which is clearly true.

Bibliografie

[1] Andreescu, T., Andrica, D., 360 Problems for Mathematical Contests, GIL Publishing House, 2003.
[2] Andreescu, T., Andrica, D., Complex Numbers from A to ... Z, Birkhäuser, Boston-Basel-Berlin, 2004.
[3] Coxeter, H. S. M., Greitzer, S. L., Geometry revisited, The Mathematical Association of America, 1967.
[4] Mitrinovic, D. S. Pecaric, J. E., Volonec, V., Recent Advances in Geometric Inequalities, Kluwer Academic Publisher, 1989.

University of Texas at Dallas
Richardson, TX
USA
E-mail: titu@amc.unl.edu
"Babes-Bolyai" University
Faculty of Mathematics and Computer Science
Cluj-Napoca, Romania
E-mail:dandrica@math.ubbcluj.ro

